noradrénaline - ορισμός. Τι είναι το noradrénaline
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι noradrénaline - ορισμός

CHEMICAL COMPOUND
Noradrenaline; Noradrenalin; Noradrenergic; Noradrenaline/Norepinephrine; Uptake 1; Uptake 2; Norepinephrine degradation; Noepinephrine; Novepinephrine; ATC code C01CA03; ATCvet code QC01CA03; Norepi; Arterenol; Nonadrenaline; Modulatory arousal system; Neuropenephrine; Noradrenergic stimulation
  • Schema of the sympathetic nervous system, showing the sympathetic ganglia and the parts of the body to which they connect.
  • Norepinephrine degradation.<ref name=Rang&Dale/> Metabolizing enzymes are shown in boxes.
  • Brain areas containing noradrenergic neurons.
  • homologue]] of norepinephrine in many invertebrate species
  • alt=Cartoon diagram of a noradrenergic synapse, showing the synthetic and metabolic mechanisms as well as the things that can happen after release.

noradrenaline         
[?n?:r?'dr?n(?)l?n]
¦ noun Biochemistry an adrenal hormone which functions as a neurotransmitter and is also used as a drug to raise blood pressure.
Origin
1930s: from nor- + adrenalin.
norepinephrine         
[?n?:r?p?'n?fr?n, -ri:n]
¦ noun another term for noradrenaline.
Norepinephrine releasing agent         
CATECHOLAMINERGIC TYPE OF DRUG
Norepinephrine releaser; Epinephrine releaser; Norepinephrine-epinephrine releaser; Epinephrine-norepinephrine releaser; Epinephrine-norepinephrine releasing agent; Norepinephrine-epinephrine releasing agent; Norepinephrine/epinephrine releasing agent; Epinephrine/norepinephrine releasing agent; Epinephrine/norepinephrine releaser; Norepinephrine/epinephrine releaser; Adrenaline releaser; Adrenaline releasing agent; Noradrenaline releasing agent; Noradrenaline releaser; Noradrenaline-adrenaline releaser; Noradrenaline/adrenaline releaser; Noradrenaline/adrenaline releasing agent; Noradrenaline-adrenaline releasing agent; Adrenaline-noradrenaline releasing agent; Adrenaline/noradrenaline releasing agent; Adrenaline-noradrenaline releaser; Adrenaline/noradrenaline releaser; Adrenergic releasing agent; Adrenergic releaser; Norepinephrine releasing agents
A norepinephrine releasing agent (NRA), also known as an adrenergic releasing agent, is a catecholaminergic type of drug that induces the release of norepinephrine (noradrenaline) and epinephrine (adrenaline) from the pre-synaptic neuron into the synapse. This in turn leads to increased extracellular concentrations of norepinephrine and epinephrine therefore an increase in adrenergic neurotransmission.

Βικιπαίδεια

Norepinephrine

Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin ad, "near", and ren, "kidney") is more commonly used in the United Kingdom, whereas "norepinephrine" (from Ancient Greek ἐπῐ́ (epí), "upon", and νεφρός (nephrós), "kidney") is usually preferred in the United States. "Norepinephrine" is also the international nonproprietary name given to the drug. Regardless of which name is used for the substance itself, parts of the body that produce or are affected by it are referred to as noradrenergic.

The general function of norepinephrine is to mobilize the brain and body for action. Norepinephrine release is lowest during sleep, rises during wakefulness, and reaches much higher levels during situations of stress or danger, in the so-called fight-or-flight response. In the brain, norepinephrine increases arousal and alertness, promotes vigilance, enhances formation and retrieval of memory, and focuses attention; it also increases restlessness and anxiety. In the rest of the body, norepinephrine increases heart rate and blood pressure, triggers the release of glucose from energy stores, increases blood flow to skeletal muscle, reduces blood flow to the gastrointestinal system, and inhibits voiding of the bladder and gastrointestinal motility.

In the brain, noradrenaline is produced in nuclei that are small yet exert powerful effects on other brain areas. The most important of these nuclei is the locus coeruleus, located in the pons. Outside the brain, norepinephrine is used as a neurotransmitter by sympathetic ganglia located near the spinal cord or in the abdomen, as well as Merkel cells located in the skin. It is also released directly into the bloodstream by the adrenal glands. Regardless of how and where it is released, norepinephrine acts on target cells by binding to and activating adrenergic receptors located on the cell surface.

A variety of medically important drugs work by altering the actions of noradrenaline systems. Noradrenaline itself is widely used as an injectable drug for the treatment of critically low blood pressure. Stimulants often increase, enhance, or otherwise act as agonists of norepinephrine. Drugs such as cocaine and methylphenidate act as reuptake inhibitors of norepinephrine, as do some antidepressants, such as those in the SNRI class. One of the more notable drugs in the stimulant class is amphetamine, which acts as a dopamine and norepinephrine analog, reuptake inhibitor, as well as an agent that increases the amount of global catecholamine signaling throughout the nervous system by reversing transporters in the synapses. Beta blockers, which counter some of the effects of noradrenaline by blocking their receptors, are frequently used to treat glaucoma, migraine, and a range of cardiovascular problems. Alpha blockers, which counter a different set of noradrenaline effects, are used to treat several cardiovascular and psychiatric conditions. Alpha-2 agonists often have a sedating effect and are commonly used as anesthesia enhancers in surgery, as well as in treatment of drug or alcohol dependence. For reasons that are still unclear, some Alpha-2 drugs, such as guanfacine, have also been shown to be effective in the treatment of anxiety disorders and ADHD. Many important psychiatric drugs exert strong effects on noradrenaline systems in the brain, resulting in side-effects that may be helpful or harmful.